个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
安徽霍邱人。农学博士,研究员,入选国家、浙江省和中国农科院特殊人才支持计划。
1997年毕业于安徽农业大学农学系,获农学学士学位; 2003年和2011年分别毕业于中国农业科学院研究生院茶学专业,获农学硕士和博士学位。2003年进入中国农业科学院茶叶研究所工作,2015-2016年赴澳大利亚La Trobe University 农业生物中心 Jim Whelan 院士实验室进行访学研究。
现任中国农业科学院茶叶研究所副所长,国家茶树改良中心主任,农业农村部特种经济动植物生物学与遗传育种重点实验室主任,中国农业科学院茶树遗传育种创新团队首席科学家,博(硕)士生导师。
主要研究方向:围绕茶树优特异和抗性品种选育这一主要方向,开展茶树重要性状(抗寒、抗病、芽休眠、花芽分化等)遗传调控机理、茶树功能基因发掘以及茶树分子设计育种技术研究。
先后主持完成国家基金面上项目等省部级以上课题多项,作为主要研究骨干参加过近40个国家级和省部级项目的研究工作。现正主持国家自然科学基金区域创新联合基金重点项目、国家重点研发计划项目子课题、浙江省农业(茶树)新品种选育重大专项、国家茶叶产业技术体系绿茶品种改良岗位等,作为主要研究骨干参与国家自然科学基金多个等项目的研究工作。以第一完成人育成国家登记茶树新品种8个,获得植物新品权3件,主要完成人登记新品种25个,植物品种权3件。获国家发明专利6项,在Nature communications、Plant Physiology、Horticultural Research、中国农业科学等国内外刊物发表科技论文150余篇,其中以第一作者或通讯作者在Nature communications等刊物发表SCI论文50余篇,联合主编英文专著1部,参编著作6部。
担任中国茶叶学会常务理事、中国茶叶学会学术工作委员会主任委员、中国农业科学院茶叶研究所学术委员会委员,广东省茶树资源创新利用重点实验室学术委员会委员和Horticulturae、茶叶科学、中国茶叶、茶叶学报、茶叶、茶叶通讯等期刊编委,Tree Physiology的 Reviewer Board Member。还担任New Phytologist、Plant Journal、Plant Biotechnology Journal、Horticultural Research、JAFC等多家国内外期刊的审稿专家。
获得中国农业科学院科技成果二等奖3项(排名第11、第3、第3)和中国农科院2020年度十大科研进展1项,获第三届中国茶叶学会青年科技奖(2013)、第四届全国优秀茶叶科技工作者(2018)、浙江省“万名好党员” (2016)和多次获得中国农业科学院和茶叶所“优秀共产党员”等荣誉。
实验室已培养出站院优秀博士后3人,在站3人,常年招收博士后人员。
茶树遗传育种创新团队是国内外茶树遗传育种领域一支重要的研究队伍,现有团队成员19人,其中固定岗位15人(博士生导师7人,硕士生导师6人,院“农科英才”1人,院级“青年英才”3人,所级3人,国家和浙江省万人计划科技创新领军人才1人),博士后人员4人,团队资深首席为杨亚军研究员,首席科学家为王新超研究员。另有科研助理10余人,研究生20余人。团队以“四个面向”精神为指引,对标“一流学科”建设标准,围绕未来茶产业发展对品种的需求,开展茶树新品种选育和育种基础理论与技术研究。主要研究选题包括三个方面:
一、茶树重要性状遗传机理解析:重点解析茶树品质、生长发育与抗逆等主要性状的遗传调控机理,挖掘关键基因和调控网络,为茶树抗逆及品质育种提供相关理论指导。
二、茶树育种新技术研发:瞄准制约茶树育种效率低的主要技术瓶颈,开展茶树全基因组选择育种技术、转基因技术和基因编辑技术研究,建立茶树分子设计育种技术体系。
三、茶树新品种选育与推广:针对茶产业发展及供给侧结构性改革对茶树品种需求,以优质、高抗、特异、适合机采等为目标,开展新品种选育与推广,发挥品种对茶产业的支撑作用。
“十三五”以来,团队在茶树全基因组组装和遗传演化、抗逆及品质形成机理解析、茶树新品种选育等方面取得显著成效,在Nature Communications、Plant Journal、Plant Cell & Environment、Horticultural Research等SCI经典期刊发表论文80余篇,获得神农中华农业科技奖二等奖1项,院2020年度十大科技进展和八大重点突破1项;完成品种登记17个,获得新品种保护权9个。育成的中茶系列新品种在全国绿茶主产区推广,产生了显著的经济和社会效益。
欢迎优秀学子加盟团队,共谱茶学研究新华章!
近5年主持主要项目:
1. 国家自然科学基金区域创新联合基金重点项目:浙江绿茶主栽品种响应“倒春寒”的分子调控机制,2023-2026(主持)
2. 国家现代农业产业技术体系:绿茶品种改良岗位,2022-2025(主持)
3. 国家自然科学基金面上项目:钙依赖性蛋白激酶基因CsCDPK2调控茶树低温响应的机制研究,2018-2021(主持)
4. 国家重点研发计划子课题:茶树花芽分化性状形成与调控机制,2018-2022(主持)
5. 国家自然科学基金面上项目:生长素在茶树越冬芽休眠与解除中的作用机制研究,2014-2017(主持)
6. 浙江省农业新品种选育重大科技专项-茶树,2021-2025(主持)
7. 茶树遗传育种创新团队,2021-2025(主持)
8. 浙江省农业新品种(茶树)选育重大科技专项课题:红绿兼制型茶树新品种选育,2016-2020(主持)
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg主持在研项目:
1. 国家自然科学基金区域创新联合基金重点项目:浙江绿茶主栽品种响应“倒春寒”的分子调控机制,2023-2026(主持)
2. 国家现代农业产业技术体系:绿茶品种改良岗位,2022-2025(主持)
3. 浙江省农业新品种选育重大科技专项-茶树,2021-2025(主持)
4. 茶树遗传育种创新团队,2021-2025(主持)
5. 全国茶树育种联合攻关项目,2023-2027(主持)
近五年主要研究成果:
一、育成品种
1. 中茶601, GPD茶树(2020)330024,第一完成人
2. 中茶602,GPD茶树(2020)330025,第一完成人
3. 中茶603,GPD茶树(2020)330026,第一完成人
4. 中茶604,GPD茶树(2021)330017,第一完成人
5. 中茶606,GPD茶树(2021)330019,第一完成人
6. 中黄4号,GPD茶树(2022)330028,第一完成人
7. 中茶308,GPD茶树(2022)330049,第一完成人
8. 中茶紫芽2号,GPD茶树(2022)330061,第一完成人
9. 中黄1号,GPD茶树(2019)330033,第三完成人
10. 中黄2号,GPD茶树(2019)330034,第三完成人
11. 中茶605,GPD茶树(2021)330018,第二完成人
二、2016年以来发表的代表性论文(#:共同第一作者,*通讯作者)
1. WangL, Cao H, Chen C, Yue C, Hao X, Yang Y*, Wang X*. Complementary transcriptome andproteome analyses of a chlorophyll-deficient tea plant cultivar revealsmultiple metabolic pathway changes. Journal of Proteomics, 2016, 130: 160-169.
2. WangL, Wang Y, Cao H, Hao X, Zeng J, Yang Y*, Wang X*. Transcriptome analysis of ananthracnose-resistant tea plant cultivar reveals genes associated withresistance to Colletotrichumcamelliae. PLoSONE, 2016, 11(2): e0148535.
3. QianW, Yue C, Wang Y, Cao H, Li N, Wang L, Hao X, Wang X*, Xiao B*, Yang Y*. Identification of theinvertase gene family (INVs) in tea plant and their expression analysis underabiotic stress. PlantCell Reports, 2016, 35:2269–2283.
4. WangY C, Qian W J, Li N N, Hao X Y, Wang L, XiaoB*, Wang X C*,Yang Y J*. Metabolicchanges of caffeine in teaplant (Camelliasinensis (L.) O.Kuntze) as defense response to Colletotrichum fructicola. Journal ofAgricultural and Food Chemistry, 2016, 64 (35): 6685–6693.
5. WangY C, Hao X Y, Wang L, Xiao B, Wang X C*, Yang Y J*. Diverse Colletotrichumspecies cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) inChina. Scientific Reports, 2016, 6:35287.
6. Hao X, Li L, Hu Y, Zhou C, WangX, Wang L, Zeng J, Yang Y. Transcriptomic analysis of the effects of three differentlight treatments on the biosynthesis of characteristic compounds in the teaplant by RNA-Seq. TreeGenetics & Genomes, 2016, 12: 118.
7. LiN, Qian W, Wang L, Cao H, Hao X, Yang Y*, Wang X*. Isolation and expression featuresof hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Journal of PlantPhysiology, 2017, 209: 95-104.
8. WangL#, Cao H#, Qian W, Yao L, Hao X, Li N, Yang Y*, Wang X*. Identification of a novel bZIP transcriptionfactor in Camelliasinensis as a negative regulator of freezing tolerance in transgenicArabidopsis. Annalsof Botany, 2017, 119(7): 1195-1209.
9. HaoX, Yang Y, Yue C, Wang L, Horvath D P*, Wang X*. Comprehensive transcriptome analysesreveal differential gene expression profiles of Camellia sinensis axillary budsat para-, endo-, ecodormancy and bud flush stages. Frontiers in Plant Science, 2017, 8:553.
10. Yue C, Cao H, Hao X, Zeng J, Qian W, Guo Y, Ye N, Yang Y*, Wang X*.Differential expression of gibberellin- and abscisic acid-related genes impliestheir roles in the bud activity-dormancy transition of tea plant. Plant CellReports, 2018, 37(3):425-441.
11. FuJ, Wang X,Mao T, Chen H, Chen F, Yang Y. Identification and functional analysis of germin-likeprotein gene family in tea plant (Camelliasinensis).ScientiaHorticulturae, 2018, 234: 166-175.
12. WangL, Yao L, Hao X, Li N, Qian W, Yue C, Ding C, Zeng J, Yang Y*, Wang X*. Tea plantSWEET transporters: expression profiling, sugar transport, and the involvementof CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant MolecularBiology, 2018, 96(6):577-592
13. WangY#, Hao X#, Lu Q, Wang L, Qian W, Li N, DingC, Wang X*, Yang Y*. Transcriptional analysisand histochemistry reveal that hypersensitive cell death and H2O2 have crucialroles in the resistance of tea plant (Camellia sinensis (L.) O.Kuntze) toanthracnose. HorticultureResearch, 2018, 5: 18
14. HaoX, Tang H, Wang B, Yue C, Wang L, Zeng J, Yang Y*, Wang X*. Integrative transcriptional andmetabolic analyses provide insights into cold spell response mechanisms inyoung shoots of the tea plant. Tree Physiology, 2018, 38(11):1655–1671.
15. LiN#, Yue C#, Cao H, Qian W, Hao X, Wang Y, Wang L, Ding C, Wang X*, Yang Y*.Transcriptome sequencing dissection of the mechanisms underlying differentialcold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). Journal of Plant Physiology,2018, 224-225: 144-155
16. HaoX, Wang B, Wang L, Zeng J, Yang Y*, WangX*. Comprehensive transcriptome analysis reveals common and specific geneexpression profile changes in tea plant leaves under cold acclimation and rapidcold stress conditions. ScientiaHorticulturae, 2018, 240: 354-368
17. DingC, Sophia N, Wang Y, Li N, Wang L, Hao X, Zeng J, Wang X*, Yang Y*. Genome-wide identification andcharacterization of ALTERNATIVE OXIDASE genes and their response under abioticstresses in Camelliasinensis (L.) O. Kuntze. Planta, 2018, 248(5): 1231-1247
18. HaoX*, Zhang W, Zhao F, Liu Y, Qian W, Wang Y, Wang L, Zeng J, Yang Y*, Wang X*.Discovery of plant viruses from tea plant (Camellia sinensis(L.) O. Kuntze) by metagenomicsequencing. Frontiersin Microbiology, 2018, 9:2175
19. QianW, Xaio B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y*, Wang X*. CsINV5, atea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biology,2018, 18: 228
20. LuQ, Wang Y, Li N, Ni D*, Yang Y *, Wang X*. Differences in the characteristics andpathogenicity of Colletotrichumcamelliae and C.fructicola isolated from the tea plant (Camellia sinensis (L.) O. Kuntze). Frontiers inMicrobiology, 2018, 9:3060
21. WangL, Yao L, Hao X, Li N, Wang Y, Ding C, Lei L, Qian W, Zeng J, Yang Y*, Wang X*.Transcriptional and physiological analyses reveal the association of ROSmetabolism with cold tolerance in tea plant. Environmental and Experimental Botany, 2019, 160:45-58
22. HaoX, Tang H, Wang B, Wang L, Cao H, Wang Y, Zeng J, Fang S, Chu J, Yang Y*, Wang X*. Gene characterizationand expression analysis reveal the importance of auxin signaling in buddormancy regulation in tea plant. Journal of Plant Growth Regulation,2019, 38:225-240
23. YueC, Cao H, Lin H, Hu J, Ye Y, Li J, Hao Z, Hao X, Sun Y, Yang Y*, Wang X*.Expression patterns of alpha‑amylase and beta‑amylase genes provide insightsinto the molecular mechanisms underlying the responses of tea plants (Camellia sinensis)to stress and postharvest processing treatments. Planta, 2019, 250:281-298
24. DingC, Lei L, Yao L, Wang L, Hao X, Li N, Wang Y, Yin P, Guo G*, Yang Y*, Wang X*.The involvements of calcium-dependent protein kinases and catechins in teaplant [Camelliasinensis (L.) O. Kuntze] cold responses. Plant Physiology and Biochemistry, 2019, 143:190-202
25. FuJ, Liu G, Yang M, WangX, Chen X, Chen F, Yang Y. Isolation and functional analysis of squalenesynthase gene in tea plant Camelliasinensis. PlantPhysiology and Biochemistry, 2019, 142: 53-58
26. LiN N, Lu J L, Li Q S, Zheng X Q, Wang X C, Wang L, Wang Y C, Ding C Q, Liang YR*, Yang Y J*. Dissection of chemical composition and associated geneexpression in the pigment- deficient tea cultivar ‘Xiaoxueya’ reveals an albinophenotype and metabolite formation. Frontiers in Plant Science, 2019, 10:1543.
27. WangY, Xiong F, Lu Q, Hao X, Zheng M, Wang L, Li N, Ding C, Wang X*, Yang Y*.Diversity of Pestalotiopsis-likespecies causing gray blight disease of tea plants (Camellia sinensis) in China, including two novel Pestalotiopsis species,and analysis of their pathogenicity. Plant Disease, 2019, 103(10):2548-2558
28. HaoX, Zhang W, Liu Y, Zhang H, Ren H, Chen Y, Wang L, Zeng J, Yang Y*, Wang X*. Palegreen mutant analyses reveal the importance of CsGLKs in chloroplastdevelopmental regulation and their effects on flavonoid biosynthesis in teaplant. PlantPhysiology and Biochemistry, 2020, 146: 392-402.
29. WangY#, Lu Q#, Xiong F, Hao X, Wang L, Zheng M, Li N, Ding C, Wang X*, Yang Y*.Genome-wide identification, characterization, and expression analysis ofnucleotide-binding leucine-rich repeats gene family under environmental stressesin tea (Camelliasinensis). Genomics,2020, 112: 1351-1362
30. LiuY#, Hao X#, Lu Q, Zhang W, Zhang H, Wang L, Yang Y*, Xiao B*, Wang X*.Genome-wide identification and expression analysis of flowering-related genesreveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis). Genomics, 2020,112: 2318-2326
31. YaoL, Hao X, Cao H, Ding C, Yang Y*, Wang L*, Wang X. ABA‑dependent bZIP transcription factor,CsbZIP18, from Camellia sinensis negatively regulates freezing toleranceinArabidopsis. PlantCell Reports, 2020: 39:553-565
32. XiongF#, Wang Y#, Lu Q, Hao X, Fang W, Yang Y, Zhu X*, Wang X*. Lifestyle characteristics andgeneexpression analysis of Colletotrichum camelliae isolated from tea plant [Camelliasinensis (L.)O. Kuntze] based on transcriptome. Biomolecules, 2020, 10:782
33. WangL, Feng X, Yao L, Ding C, Lei L, Hao X, Li N, Zeng J, Yang Y*, Wang X*.Characterization of CBL–CIPK signaling complexes and their involvement in coldresponse in tea plant. PlantPhysiology and Biochemistry, 2020, 154: 195-203.
34. YaoL, Ding C, Hao X, Zeng J, Yang Y, Wang X*, Wang L*. CsSWEET1a and CsSWEET17mediate growth and freezing tolerance by promoting sugar transport across theplasma membrane. Plant and Cell Physiology, 2020, 61(9):1669-1682.
35. Lu,Q, Wang, Y, Xiong, F, Hao X, Zhang X, Li N, Wang L, Zeng J, Yang Y*,Wang X*.Integrated transcriptomic and metabolomic analyses reveal the effects ofcallose deposition and multihormone signal transduction pathways on the tea plant-Colletotrichumcamelliae interaction. Sci Rep, 2020 10:12858
36. Wang X#, Feng H#,Chang Y#, MaC#, Wang L#, Hao X#, Li A, Cheng H, Wang L,Cui P, Jin J, Wang X,Wei K, Ai C, Zhao S, Wu Z, Li Y, Liu B, Wang G D*, Chen L*, Ruan J*, Yang Y*.Population sequencing enhances understanding of tea plant evolution. Nature Communications,2020, 11:4447
37. YiChangyu, WangXinchao, Chen Qian, Callahan Daminen L, Fournier-Level Alexandre, WhelanJames, Jost Ricarda. Diverse phosphate and auxin transport loci distinguishphosphate tolerant from sensitive Arabidopsis accessions. Plant Physiology, 2021, 187(4):2656–2673
38. ChenYao, Li Yuteng, Ren Hengze, Zhou Jianrong, Wang Lu, Yang Yajun*, Hao Xinyuan*, Wang Xinchao. Genome-wideidentification and expression profiling reveal the diverse role of Methyl-CpG-bindingdomain proteins in tea plant Camelliasinensis. BeveragePlant Research 2021, 1: 10
39. WangHuan, Ding Zhaotang, Gou Mengjie, Hu Jianhui, Wang Yu, Wang Lu, WangYuchun, DiTaimei, Zhang Xinfu, Hao Xinyuan, Wang Xinchao, Yang Yajun, Qian Wenjun*.Genome-wide identification, characterization, and expression analysis of teaplant autophagy-related genes(CsARGs)demonstrates that they play diverse roles during development and under abioticstress. BMCGenomics, 22:121
40. Wei Kang, Wang Xinchao, HaoXinyuan, QianYinhong, Li Xin, Xu Liyi, Ruan Li, Wang Yongxin, Zhang Yazhen, BaiPeixian, LiQiang, Aktar Shirin, Hu Xili, Zheng Guoyang, Wang Liubin, LiuBenying, HeWeizhong *, Cheng Hao *, Wang Liyuan *. Development of a genome-wide200K SNP array and its application for high-density genetic mapping and originanalysis of Camellia sinensis. Plant Biotechnology Journal, 2022, 20: 414–416(共同第一作者)
41. CaoQinghai, Lv Wuyun, Jiang Hong, Chen Xueling, Wang Xinchao*, Wang Yuchun*. Genome-wideidentification of glutathioneS-transferase gene family members in tea plant (Camellia sinensis)and their response to environmental stress. International Journal of Biological Macromolecules,2022, 205: 749-760
42. Peng J, LiN, Ding C, Li X, Wu Y, Hao X, Wang Y, Yang Y, Wang X*, WangL*. The interaction of CsWRKY4 andCsOCP3 with CsICE1 regulates CsCBF1/3 and mediates stress response in tea plant(Camelliasinensis). Environmental andExperimental Botany, 2022, 200: 104892
43. Wang Lu, DiTaimei, Peng Jing, Li Yuteng, LiNana, Hao Xinyuan, Ding Changqing, Huang Jianyan, Zeng Jianming, Yang Yajun*, Wang Xinchao*.Comparative metabolomic analysis reveals the involvement of catechins inadaptation mechanism to cold stress in tea plant (Camellia sinensis var.sinensis). Environmentaland Experimental Botany, 2022, 201: 104978
44. He Shan, LiBo, Wang Huan, Liang Shicai, Ding Zhaotang, Wang Yu, Fan Kai, Hu Jianhui, WangXinchao*, Qian Wenjun*. Characterization of invertase inhibitors (InvInhs) intea plant, and their potential roles in participating in growth, developmentand cold response. ScientiaHorticulturae, 2023, 308: 111580
45. Liu Y.,Dreni L., Zhang H., Zhang X., Li N., Zhang K., Di T., Wang L., Yang Y., Hao X.,Wang X*. A tea plant (Camelliasinensis) FLOWERING LOCUS C-like gene, CsFLC1, is correlated to bud dormancy andtriggers early flowering in Arabidopsis.Int. J. Mol. Sci. 2022, 23:15711.
46. Jiang Hong,Cao Qinghai, Wang Xinchao*, Lv Wuyun*, Wang Yuchun*. Pectate lyase genesabundantly expressed during the infection regulate morphological development of Colletotrichum camelliae andCcPEL16 is required for full virulence to tea plants. Msphere,2023,8(1): 10.1128/msphere.00677-22.
47. Ding, Y.;Huang, H.; Cui, H.; Wang, X*.; Zhao, Y*. A non-destructive method foridentification of tea plant cultivars based on deep learning. Forests,2023, 14: 728
48. Di, T.; Wu,Y.; Peng, J.; Wang, J.; Wang, H.;He, M.; Li, N.; Hao, X.; Yang, Y.; Ni, D.; Wang,L., Wang, X. CsCIPK11-regulated metalloprotease CsFtsH5 mediates the coldresponse of tea plants. Int.J. Mol.Sci. 2023, 24, 6288.
49. HuangJianyan *, Zhao Xiaobo, Bürger Marco,Chory Joanne, Wang Xinchao*. The role ofethylene in plant temperature stress response. Trends in Plant Science, 2023,28(7):808-824.
50. Chen Yao,Tang Junwei, Ren Hengze, Li Yuteng, LiCongcong, Wang Haoqian, Wang Lu, YangYajun, Wang Xinchao, Hao Xinyuan*. Exogenous activation of the ethylenesignaling pathway enhances the freezing tolerance of young tea shoots byregulating the plant’s antioxidant system. Horticulturae 2023, 9,875.
51. DingChangqing, Hao Xinyuan, Wang Lu, Li Nana,Huang Jianyan, Zeng Jianming, YangYajun*, Xinchao Wang*. iTRAQ-based quantitative proteomic analysis of tea plant(Camellia sinensis (L.) O. Kuntze) during cold acclimation and de-acclimationprocedures. BeveragePlant Research,2023, 3:16.
52. Lv W, Xu Y,Jiang H, Cao Q, Wang X*, Wang Y*. An NBS-LRR-encoding gene CsRPM1 confersresistance to the fungus Colletotrichum camelliae in tea plant. Beverage PlantResearch, 2023, 3:13.
53. ZhangKexin, Feng Xia, Liu Ying, Yang Yajun, Hao Xinyuan, Li Dongliang, Wang Xinchao*,Wang Lu*. Integrative transcriptome and whole-genome bisulfitesequencing analyses of a temperature-sensitive albino tea plant cultivar. Physiologia Plantarum,2023,175(6):e14064
54. Lu Lu, WangLu, Liu Ru-Yi, Zhang Ying-Bin, ZhengXin-Qiang, Lu Jian-Liang, Wang Xin-Chao *,Ye Jian-Hui *. An efficient artificial intelligence algorithm for predictingthe sensory quality of green and black teas based on the key chemical indices. Food Chemistry,2024,441:138341
55. Lv Wuyun,Cao Qinghai, Jiang Hong, Ren Henze, Wang Xinchao*, Wang Yuchun*. A tauclass glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plantsusceptibility to Colletotrichum camelliae infection mediated by jasmonatesignaling pathway. PlantJ,2024,117(5):1356-1376
56. Li Nana, HeWeizhong, Ye Yufan, He Mingming, Di Taimei, Hao Xinyuan, Ding Changqing, YangYajun, Wang Lu *, WangXinchao *. Integrated metabolomics and proteomics analyses reveal theregulatory mechanism underlying the yellow leaf phenotype of the tea plantcultivar ‘Zhonghuang 2’. HorticulturalPlant Journal, 2024, DOI:10.1016/j.hpj.2023.07.010
57. Wang Lu, DiTaimei, LiNana, Peng Jing, Wu Yedie, He Mingming, Hao Xinyuan, Huang Jianyan,Ding Changqing, Yang Yajun, WangXinchao* Transcriptomicanalysis of hub genes regulating albinism in light- and temperature-sensitivealbino tea cultivars‘Zhonghuang 1’ and ‘Zhonghuang 2’. Plant MolecularBiology,2024,114:44
58. Ding Kai,Lv Wuyun, Ren Henze, Xiong Fei, Zhang Yuting,Zhang Junhong, Tong ZaiKang*, Wang Xinchao*, Wang Yuchun*.Small world but bigdifference: Phyllosphere fungal composition, function, assembly and networkdriven by secondary metabolites in tea plant (Camellia sinensis). Plant and Soil,2024,10.1007/s11104-024-06579-w
59. Wang Yanli,Tong Wei, Li Fangdong, SamarinaLidia, Li Penghui, Yang Tianyuan, ZhangZhaoliang, Yi Lianghui, Zhai Fei, WangXinchao*, Xia Enhua*. LUXARRHYTHMO links CBF pathway andjasmonic acid metabolism to regulate coldtolerance of tea plants. PlantPhysiology,2024, DOI: 10.1093/plphys/kiae337
60. Zheng Qinghua, Guo Lina, Huang Jianyan, Hao Xinyuan, LiXiaoman, Li Na-na, Wang Yueqi, Zhang Kexin, Wang Xinchao, Wang Lu*, Zeng Jianming*. Comparative transcriptomicsprovides novel insights into the mechanisms of selenium accumulation andtransportation in tea cultivars (Camellia sinensis (L.) O. Kuntze). Frontiersin Plant Science, 2023,14:1268537.
61. Tang Junwei, Chen Yao, Huang Chao, Li Congcong,Feng Yue, Wang Haoqian, Ding Changqing, Li Na-na, Wang Lu, Zeng Jianming, YangYajun, Hao Xinyuan*, Xinchao Wang.Uncovering the complex regulatory network of spring bud sprouting in teaplants: insights from metabolic, hormonal, and oxidative stress pathways.Frontiers in Plant Science, 2023, 14:1263606.
62. Wu Yedie,Di Taimei, Wu Zhijing, Peng Jing, Wang Jie, Zhang Kexin, He Mingming, Li Nana,Hao Xinyuan, Fang Wanping, Wang Xinchao,Wang Lu*. CsLHY positively regulates cold tolerance by activating CsSWEET17 intea plants. Plant Physiology and Biochemistry,2024,207:108341
文件上传中...