油料所-游均导师介绍

更新于 2025-05-09 导师主页
游均 副研究员 硕士生导师
油料所
作物遗传育种 ,农艺与种业
分子育种
junyou@caas.cn

硕士招生专业

1
农艺与种业
2025
1
专业学位硕士
作物科学

游均,博士,副研究员,硕士生导师,中国农业科学院油料作物研究所芝麻与特色油料遗传育种创新团队执行首席。主要从事芝麻品质和抗逆分子育种研究。主持国家重点研发计划子课题、国家自然科学基金、湖北省重点研发计划等多个科研项目,初步揭示了芝麻油脂及其组分、功能活性成分芝麻素、褪黑素等含量变异的遗传基础;初步探明了芝麻抗旱、耐渍、耐盐的分子机制,全基因组解析了芝麻根系性状遗传基础,发掘出一批抗旱、耐渍和根系发育等性状基因位点;率先在芝麻中实现了CRISPR/Cas9介导的基因编辑;发表论文70余篇,其中以第一或通讯作者(含共同)在Plant Biotechnology Journal、Journal of Advanced Research、Plant Physiology、Journal of Experimental Botany等杂志发表SCI论文40余篇,单篇最高影响因子13.263;获授权发明专利12项,实用新型专利4项;参与育成芝麻新品种16个,发布行业标准1项。

具体研究方向

(1)芝麻种子发育与营养品质形成的遗传基础和调控网络研究;

(2)芝麻非生物逆境抗性调控基因及其分子机制:

(3)基于基因编辑技术的芝麻种质创制与分子育种。


展开更多

科研项目

1、国家重点研发计划项目子课题,多功能苏子、红花品种选育与示范应用,2025-2027,主持

2、湖北省国际合作项目,优质高产芝麻品种选育与示范,2024EHA055,2024-2026,主持

3、湖北省引进外国人才和智力项目(高端外国专家项目),芝麻现代育种关键种质创新与基因发掘,2024DJC011,2024,主持

4、湖北省重点研发计划(国际合作领域),高产抗旱适宜机械化芝麻品种选育及示范,2020BHB028,2020-2022,主持

5、农业部中央级公益性科研院所基本科研业务费专项,芝麻逆境应答基因网络构建及抗旱基因挖掘,1610172018007,2018-2020,主持

6、国家自然科学基金青年基金,水稻OsSRO1c基因在干旱胁迫诱导的叶片衰老中的功能研究,31500223,2016-2018,主持


展开更多

研究成果

以第一或通讯作者发表论文40余篇,影响因子大于10的论文3篇。

1.     Kefale H†,Zhou R†, Luo Z, Dossou SSK, Berhe M, Wang L, Abbas AA, Zhang Y, Zhou T, You J*, Wang L*. Metabolomic and biochemical insights into bioactive compoundsand antioxidant properties of black oilseed testa and peeled seeds. Curr Res Food Sci. 2025, 10:100939. https://doi.org/10.1016/j.crfs.2024.100939

2.     Zhou J, Hu F, Berhe M, Zhou R, Li D, Li H,Yang L, Zhou T, Zhang Y, Wang L*, You J*. Genome-wide identification, classification, and expression profiling of LACgene family in sesame. BMC Plant Biol. 2024,24:1254. https://doi.org/10.1186/s12870-024-05982-w

3.     DossouSSK†, Luo Z†, Deng Q, Zhou R, Zhang Y, Li D, Li H, TozoK, You J*, Wang L*. Biochemical and molecular insights into variation insesame seed antioxidant capability as revealed by metabolomics andtranscriptomics analysis. Antioxidants. 2024, 13(5):514. https://doi.org/10.3390/antiox13050514

4.     Li H†,Hu F†, Zhou J, Yang L, Li D, Zhou R, Zhou T, Zhang Y, Wang L*, You J*. Genome-wide characterization of the DIR gene family in sesame revealsthe function of SiDIR21 in lignan biosynthesis. Plant Physiol Biochem. 2024,217:109282. https://doi.org/10.1016/j.plaphy.2024.109282

5.     Song S†,Dossou SSK†, Meng M†, Sheng C, Li H, Zhou R, Li D, Xu P, You J*, Wang L*. Five improved sesame reference genomes and genome resequencingunveil the contribution of structural variants to genetic diversity andyield-related traits variation. Plant Biotechnol J. 2023, 21:1722-1724. https://dx.doi.org/10.1111/pbi.14092

6.     Wang X†,Wang S†, Lin Q†, Lu J, Lv S, Zhang Y, Wang X, Fan W, LiuW, Zhang L*, Zhang X*, You J*, Cui P*, Li P*. The wild allotetraploidsesame genome provides novel insights into evolution and lignan biosynthesis. J Adv Res. 2023, 50:13-24. https://dx.doi.org/10.1016/j.jare.2022.10.004

7.     Kefale H,Dossou SSK, Li F, Jiang N, Zhou R, Wang L, Zhang Y, Li D, You J*, Wang L*. Widely targeted metabolic profiling provides insights into variations inbioactive compounds and antioxidant activity of sesame, soybean, peanut, andperilla, Food Res Int. 2023, 174:113586. https://doi.org/10.1016/j.foodres.2023.113586

8.     Sheng C,Song S, Zhou W, Dossou SSK, Zhou R, Zhang Y, Li D, You J*, Wang L*.Integrating transcriptome and phytohormones analysis provided insights intoplant height development in sesame. Plant Physiol Biochem. 2023, 198:107695. https://dx.doi.org/10.1016/j.plaphy.2023.107695

9.     Dossou SSK†,Song S†, Liu A, Li D, Zhou R, Berhe M, Zhang Y, Sheng C, Wang Z, You J*, Wang L*. Resequencing of 410 sesame accessions identifies SINST1 as themajor underlying gene for lignans variation. Int J Mol Sci. 2023, 24:1055. https://dx.doi.org/10.3390/ijms24021055

10.     Li H, Tahir Ul Qamar M, Yang L, Liang J, You J*, Wang L*. Current progress, applications and challenges of multi-omicsapproaches in sesame genetic improvement. Int J Mol Sci. 2023, 24:3105. https://dx.doi.org/10.3390/ijms24043105

11.     Dossou SSK†, Luo Z†, WangZ, Zhou W, Zhou R, Zhang Y, Li D, Liu A, Dossa K, You J*, Wang L*. Thedark pigment in the sesame (Sesamum indicum L.) seed coat: isolation,characterization, and its potential precursors. Front Nutr. 2022, 9:858673. https://dx.doi.org/10.3389/fnut.2022.858673

12.     You J*, Li D, Yang L, Dossou SSK, Zhou R, Zhang Y,Wang L*. CRISPR/Cas9-mediated efficient targeted mutagenesis in sesame (Sesamum indicum L.). Front Plant Sci. 2022, 13:935825. https://dx.doi.org/10.3389/fpls.2022.935825

13.     Wang X†, You J†*, Liu A, Qi X, Li D,Zhao Y, Zhang Y, Zhang L*, Zhang X*, Li P*. Variation in melatonin contents andgenetic dissection of melatonin biosynthesis in sesame. Plants (Basel). 2022,11:2005. https://doi.org/10.3390/plants11152005

14.     Zhou W†, Song S†, DossouSSK, Zhou R, Wei X, Wang Z, Sheng C, Zhang Y, You J*, Wang L*.Genome-wide association analysis and transcriptome reveal novel loci and acandidate regulatory gene of fatty acid biosynthesis in sesame (Sesamum indicumL.). Plant Physiol Biochem. 2022, 186:220-231. https://dx.doi.org/10.1016/j.plaphy.2022.07.023

15.     Su R, Dossou SSK, Dossa K, Zhou R, Liu A, ZhongY, Fang S, Zhang X, Wu Z*, You J*. Genome-wide characterization andidentification of candidate ERF genes involved in various abiotic stressresponses in sesame (Sesamum indicum L.). BMC Plant Biol. 2022, 22: 256 http://dx.doi.org/10.1186/s12870-022-03632-7

16.     Dossa K*, Zhou R, Li D, Liu A, Qin L, Mmadi MA,Su R, Zhang Y, Wang J, Gao Y, Zhang X*, You J*. A novel motif in the5'-UTR of an orphan gene 'Big Root Biomass' modulates root biomass in sesame.Plant Biotechnol J. 2021, 19:1065-1079. https://dx.doi.org/10.1111/pbi.13531

17.     Wang L†, Dossa K†, You J†, Zhang Y, Li D, Zhou R, Yu J, Wei X, Zhu X, Jiang S, Gao Y, Mmadi MA, Zhang X*. High-resolution temporal transcriptome sequencing unravelsERF and WRKY as the master players in the regulatory networks underlying sesameresponses to waterlogging and recovery. Genomics. 2021, 113:276-290. https://dx.doi.org/10.1016/j.ygeno.2020.11.022

18.     Liu A, Wei M, Zhou Y, Li D, Zhou R, Zhang Y,Zhang X, Wang L*, You J*. Comprehensive analysis of SRO gene family inSesamum indicum (L.) reveals its association with abiotic stress responses. IntJ Mol Sci. 2021, 22:13048. https://doi.org/10.3390/ijms222313048

19.     Zhang Y*, Gong H, Li D, Zhou R, Zhao F, Zhang X, You J*. Integrated small RNA and Degradomesequencing provide insights into salt tolerance in sesame (Sesamum indicum L.).BMC Genomics. 2020, 21: 494. https://doi.org/10.1186/s12864-020-06913-3

20.     Dossa K†, You J†, Wang L†, Zhang Y, Li D, Zhou R, Yu J, Wei X, Zhu X, Jiang S, Gao Y, Mmadi MA, Zhang X*. Transcriptomic profiling of sesame during waterlogging andrecovery. Sci Data. 2019, 6:204. https://dx.doi.org/10.1038/s41597-019-0226-z

21.     You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, ZhouR, Yu J, Zhang Y, Wang L, Zhang X*. Transcriptomic and metabolomic profiling ofdrought-tolerant and susceptible sesame genotypes in response to droughtstress. BMC Plant Biol. 2019, 19:267. https://dx.doi.org/10.1186/s12870-019-1880-1

22.    Zhang Y, Li D, Zhou R, Wang X, Dossa K, Wang L, Zhang Y, Yu J, Gong H, Zhang X*, You J*.Transcriptome and metabolome analyses of two contrasting sesame genotypesreveal the crucial biological pathways involved in rapid adaptive response tosalt stress. BMC Plant Biol. 2019, 19:66. https://dx.doi.org/10.1186/s12870-019-1665-6

23.     Zhang Y, Wei M, Liu A, Zhou R, Li D, Dossa K,Wang L, Zhang Y, Gong H, Zhang X*, You J*. Comparative proteomicanalysis of two sesame genotypes with contrasting salinity tolerance inresponse to salt stress. J Proteomics. 2019, 201:73-83. https://dx.doi.org/10.1016/j.jprot.2019.04.017

24.     Wei M, Liu A, Zhang Y, Zhou Y, Li D, Dossa K,Zhou R, Zhang X*, You J*. Genome-wide characterization and expressionanalysis of the HD-Zip gene family in response to drought and salinity stressesin sesame. BMC Genomics. 2019, 20:748. https://dx.doi.org/10.1186/s12864-019-6091-5

25.     You J, Wang Y, Zhang Y, Dossa K, Li D, Zhou R, WangL, Zhang X*. Genome-wide identification and expression analyses of genesinvolved in raffinose accumulation in sesame. Sci Rep. 2018, 8:4331. https://dx.doi.org/10.1038/s41598-018-22585-2

26.     Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D,Liu A, Mmadi MA, Zhang X, You J*. Identification and characterization ofthe bZIP transcription factor family and its expression in response to abioticstresses in sesame. PLoS One. 2018, 13:e0200850. https://dx.doi.org/10.1371/journal.pone.0200850

27.     Zhang Y, Li D, Wang Y, Zhou R, Wang L, Zhang Y,Yu J, Gong H, You J*, Zhang X*. Genome-wide identification andcomprehensive analysis of the NAC transcription factor family in Sesamumindicum. PLoS One. 2018, 13:e0199262. https://dx.doi.org/10.1371/journal.pone.0199262

28.     You J and Chan Z*. ROSregulation during abiotic stress responses in crop plants. Front Plant Sci. 2015, 6:1092. https://doi.org/10.3389/fpls.2015.01092

29.     You J, Zhang L, Song B, Qi X, Chan Z*. Systematicanalysis and identification of stress-responsive genes of the NAC gene familyin Brachypodium distachyon. PLoS ONE. 2015, 10(3):e0122027. http://dx.doi.org/10.1371/journal.pone.0122027

30.     Zhang L†, You J†, Chan Z*. Identification and characterization of TIFY family genes in Brachypodium distachyon. J Plant Res. 2015,128:995-1005. http://dx.doi.org/10.1007/s10265-015-0755-2

31.     You J, Zong W, Hu H, Li X, Xiao J, Xiong L*. ASTRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice proteinphosphatase18 modulates drought and oxidative stress tolerance through abscisicacid-independent reactive oxygen species scavenging in rice. Plant Physiol. 2014, 166: 2100-2114. http://dx.doi.org/10.1104/pp.114.251116

32.     You J, Zong W, Du H, Hu H, Xiong L*. A specialmember of the rice SRO family, OsSRO1c,mediates responses to multiple abiotic stresses through interaction withvarious transcription factors. Plant Mol Biol.2014, 84: 693-705. http://dx.doi.org/10.1007/s11103-013-0163-8

33.     You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J,Xiong L*. The SNAC1-targeted gene OsSRO1cmodulates stomatal closure and oxidative stress tolerance by regulatinghydrogen peroxide in rice. J Exp Bot.2013, 64: 569-83. 5.36. http://dx.doi.org/10.1093/jxb/ers349

34.     You J, Hu H, Xiong L*. An ornithineδ-aminotransferase gene OsOAT confers drought and oxidative stresstolerance in rice. Plant Sci. 2012, 197: 59-69. http://dx.doi.org/10.1016/j.plantsci.2012.09.002

35.    Zhou W†, Sheng C†, Dossou SSK, Wang Z, Song S, You J*, Wang L*. Genome-wideidentification of TPS genes in sesame and analysis of their expression inresponse to abiotic stresses. Oil Crop Science. 2023, 8:81-88. https://dx.doi.org/10.1016/j.ocsci.2023.03.004

36.     Zhang Y, Li D, Zhou R, Liu A, Wang L, Zhang Y,Gong H, Zhang X*, You J*. A collection of transcriptomic and proteomicdatasets from sesame in response to salt stress. Data Brief. 2020, 32:106096. https://dx.doi.org/10.1016/j.dib.2020.106096

37.     You J, Li Q, Yue B, Xue WY, Luo LJ, Xiong LZ*.Identification of quantitative trait loci for ABA sensitivity at seedgermination and seedling stages in rice. J Genet Genomics.2006, 33:532-41. http://dx.doi.org/10.1016/S0379-4172(06)60082-6

38.     杨茜†, 游均†, 周瑢, 方圣, 张艳欣, 吴自明*, 王林海*. 芝麻籽粒植酸含量高通量检测方法的建立与低植酸种质的筛选. 中国农业科学. 2024, 57(12):2282-2294. https://doi.org/10.3864/j.issn.0578-1752.2024.12.002

39.     周江龙, 胡凤铎, 周瑢, 周王易, 王志坚, 黎冬华, 张艳欣, 王林海*, 游均*. 芝麻种质资源矿质元素含量和品质性状分析与综合评价. 中国油料作物学报. 2024. https://doi.org/10.19802/j.issn.1007-9084.2023322

40.     周江龙,胡凤铎,裴庆华,周瑢,韩亮,张艳欣,王林海*,游均*. 不同黑芝麻富硒能力及营养品质性状分析. 中国油料作物学报.2024, 网络首发. https://doi.org/10.19802/j.issn.1007-9084.2024194

41.     苏如奇, 黎冬华, 吴自明, 王林海, 游均*. 芝麻非生物胁迫抗性研究进展. 中国油料作物学报.2024, 网络首发.https://doi.org/10.19802/j.issn.1007-9084.2024041

42.     游均, 郭元章, 赵应忠, 王林海*. 栽培芝麻分布、起源与驯化. 中国油料作物学报. 2024, 46(5):959-968. https://doi.org/10.19802/j.issn.1007-9084.2023065

43.     张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均*, 赵军胜*. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析. 生物技术通报. 2023, 39(11):308-317. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2023-0096

44.     罗自舒, 王志坚, 周王易, Senouwa Segla Koffi Dossou, 周瑢, 张艳欣, 黎冬华, 游均*, 王林海*. 不同颜色芝麻营养品质性状遗传变异分析. 植物遗传资源学报. 2023, 24(2):365-375. https://doi.org/10.13430/j.cnki.jpgr.20220919001

45.     魏梦园, 刘爱丽, 黎冬华, 周瑢, 王林海, 张秀荣, 游均*. 芝麻CCCH锌指蛋白基因SiC3H1的克隆及表达分析. 分子植物育种. 2020, 18(24):7982-7988. https://doi.org/10.13271/j.mpb.018.007982

46.     刘爱丽, 魏梦园, 黎冬华, 周瑢, 张秀荣, 游均*. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析. 中国农业科学. 2020, 53(17):3432-3442. https://doi.org/10.3864/j.issn.0578-1752.2020.17.002

 


展开更多

学校介绍

中国农业科学院研究生院成立于1979年,1981年经国务院批准开始实施硕士、博士学历学位教育,是我国国家级科研机构举办研究生教育的先行院所之一。作为支撑我院研究生教育的中国农业科学院成立于1957年,是农业农村部直属的综合性国家农业科研机构,是全国综合性农业科学研究的最高学术机构,是农业及农业科学技术战略咨询机构,是三农领域国家战略科技力量,担负着全国农业重大基础与应用基础研究、应用研究和高新技术技术研究的任务,致力于解决我国农业及农村经济发展中公益性、基础性、全局性、战略性、前瞻性的重大科学与技术问题。在推动农业科技创新、服务经济社会发展、培养高层次人才、促进国际交流与合作等方面发挥着重要作用。“十三五”期间,共获得国家科学技术奖36项,占全国农业领域获奖总数的26%。其中科技进步一等奖1项,自然科学二等奖2项,技术发明二等奖6项,科技进步二等奖27项;获得省部级奖励229项;发表论文近30000篇,其中SCI论文近15000篇、《NATURE》《SCIENCE》《CELL》等国际顶级学术期刊论文29篇;出版专著近1500部,通过国审品种等近1200个,获得植物新品种权397项,新兽药证书55个等。科研成果与科研实力处于行业领先地位。

中国农科院研究生教育依托中国农业科学院的国家级科研平台基地、先进科研设施设备、重大科研攻关项目、稳定的科研经费保障、前沿交叉学科集群、一流的导师队伍、广泛的国际合作机制、丰富的图书文献等各种重要资源,形成了38个研究所共同参与、“院所结合、两段式培养”这一特色鲜明的科研机构举办研究生教育的创新模式,将中国农业科学院的科研资源优势转化为学科建设、人才培养、特色办学优势,为研究生完成课程教学、开展学术研究、参与课题实践、培养创新能力提供了农业科研国家队特有的广阔舞台。

中国农业科学院深圳农业基因组研究所(以下简称“基因组所”),创建于2014年,是农业农村部,中国农科院和深圳市在科技体制改革的背景下,整合农业基因组学研究力量在深圳成立的新型研究所。

  成立以来,基因组所深入贯彻落实习近平总书记“四个面向、两个一流”指示精神,开展科研自主权改革试点工作,被列为中国农科院现代院所改革的“试验田”,建设了由中国农科院与深圳市主管领导任共同理事长的理事会;组建了近800人的研究队伍;形成了以组学技术为核心、辐射农业、食品和生态方向的学科体系,获批“岭南现代农业科学与技术广东省实验室深圳分中心”“农业农村部农业基因数据分析重点实验室”等创新载体;在包括 Science、Nature、Cell 等顶级期刊在内的杂志上发表SCI论文400多篇,以基因组设计育种育成国审、省审新品种30余个,农业基因组学等研究领域占据世界前沿。 2019年、2020年连续两年自然指数排名全国农业类科研院所第一名,多项成果入选“‘十三五’农业科技十大标志性成果”“中国生命科学十大进展”“中国农业科学十大进展”。先后获得“何梁何利基金”奖、“周光召基础科学奖”“深圳经济特区建立40周年创新创业和先进模范人物”“深圳市市长奖”等奖励。基因组所联合深圳市相关部门提出了“深圳国际食品谷”,规划已得到市政府印发,将构建农业食品产学研协作生态,做出科技推动农业食品产业转型升级的先行示范。

展开更多

按照国家相关规定,我院全日制与非全日制硕士研究生学费标准均为:8000元/人/年。凡我院各研究所录取的推免生均免收第一年学费,优秀推免生免收基本学制内全部学费。

  我院全日制非定向硕士研究生奖助学金体系由奖学金和助学金两部分组成。奖学金包括国家奖学金、学业奖学金(100%覆盖)、研究生院单项奖学金和企业奖学金。助学金包括国家助学金、研究生院助学金、导师助研津贴、“三助”津贴和特困生补助,具体奖助学金政策可登陆中国农业科学院研究生院网站查询。


展开更多
点赞
意向报名 前往导师主页